Classification of brain tumors from MR images using deep transfer learning

dc.contributor.authorPolat, Özlem
dc.contributor.authorGüngen, Cahfer
dc.date.accessioned2022-05-11T13:04:07Z
dc.date.available2022-05-11T13:04:07Z
dc.date.issued2021tr
dc.departmentTeknoloji Fakültesitr
dc.description.abstractClassification of brain tumors is of great importance in medical applications that benefit from computer-aided diagnosis. Misdiagnosis of brain tumor type will both prevent the patient from responding effectively to the applied treatment and decrease the patient’s chances of survival. In this study, we propose a solution for classifying brain tumors in MR images using transfer learning networks. The most common brain tumors are detected with VGG16, VGG19, ResNet50 and DenseNet21 networks using transfer learning. Deep transfer learning networks are trained and tested using four different optimization algorithms (Adadelta, ADAM, RMSprop and SGD) on the accessible Figshare dataset containing 3064 T1-weighted MR images from 233 patients with three common brain tumor types: glioma (1426 images), meningioma (708 images) and pituitary (930 images). The area under the curve (AUC) and accuracy metrics were used as performance measures. The proposed transfer learning methods have a level of success that can be compared with studies in the literature; the highest classification performance is 99.02% with ResNet50 using Adadelta. The classification result proved that the most common brain tumors can be classified with very high performance. Thus, the transfer learning model is promising in medicine and can help doctors make quick and accurate decisions.tr
dc.identifier.citationAccepted: 14 December 2020 / Published online: 4 January 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021tr
dc.identifier.doi10.1016/j.patrec.2005.10.010en_US
dc.identifier.endpage7252tr
dc.identifier.scopus2-s2.0-85098994451en_US
dc.identifier.scopusqualityN/A
dc.identifier.startpage7236tr
dc.identifier.urihttps://hdl.handle.net/20.500.12418/12823
dc.identifier.volume77tr
dc.identifier.wosWOS:000604819500002en_US
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Supercomputingen_US
dc.relation.publicationcategoryUluslararası Hakemli Dergide Makale - Kurum Öğretim Elemanıtr
dc.rightsinfo:eu-repo/semantics/closedAccesstr
dc.subjectBrain tumor classifcation · Transfer learning · VGG16 · VGG19 · ResNet50 · DenseNet121tr
dc.titleClassification of brain tumors from MR images using deep transfer learningen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Classification_of_brain_tumors.pdf
Boyut:
258.4 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: