Artificial neural networks approach for forecasting of monthly relative humidity in Sivas, Turkey

dc.contributor.authorGürlek, Cahit
dc.date.accessioned2024-03-08T07:52:56Z
dc.date.available2024-03-08T07:52:56Z
dc.date.issued2023tr
dc.departmentEğitim Bilimleri Enstitüsütr
dc.descriptionRelative humidity is a crucial parameter for various agricultural and engineeringen_US
dc.description.abstractRelative humidity is a crucial parameter for various agricultural and engineering applications and atmospheric dynamics; hence its accurate and reliable estimation is essential. This study aims to predict monthly relative humidity by means of the artificial neural networks (ANNs) method using neighbouring data in Sivas Province, Turkey. Nineteen years (2000- 2018) monthly mean relative humidity data of five measurement stations was used for ANN analysis. The prediction accuracy of the ANN models was evaluated with the coefficient of determination (R2), mean absolute error (MAE), mean absolute percentage error (MAPE) and root mean squared error (RMSE). Contour plot maps were also generated for visual comparison. R2, MAE, MAPE and RMSE values ranged between 0.952-0.965, 1.916-2.586, 3.422-4.974 and 2.472-3.391, respectively. The results showed that the ANN method provided satisfactory predictions for relative humidity.tr
dc.identifier.scopus2-s2.0-85166585348en_US
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://hdl.handle.net/20.500.12418/15031
dc.identifier.wosWOS:001042056200002en_US
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.relation.publicationcategoryRaportr
dc.rightsinfo:eu-repo/semantics/closedAccesstr
dc.titleArtificial neural networks approach for forecasting of monthly relative humidity in Sivas, Turkeyen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Yayın_1.pdf
Boyut:
165.47 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: