Optimized synthesis and characterization of La(OH)3 and LaB6 nanostructures for enhanced NIR optical filters

dc.contributor.authorBulbul, B. G.
dc.contributor.authorToprak, B. C.
dc.contributor.authorSayrac, M.
dc.contributor.authorOzen, Y.
dc.contributor.authorOzcelik, S.
dc.date.accessioned2024-10-26T18:05:18Z
dc.date.available2024-10-26T18:05:18Z
dc.date.issued2024
dc.departmentSivas Cumhuriyet Üniversitesi
dc.description.abstractThe present study describes a method for synthesizing nanostructured La(OH)3 and LaB6 materials with efficient field emission properties using the spin coating technique. The study was motivated by the significant demand for the optical properties of LaB6 with efficient field emission properties using the spin coating technique in the near-infrared (NIR) region. The optimization of the LaB6 synthesis process for economic and reproducible results is highlighted, showcasing a systematic approach starting from La(OH)(3 )formation through chemical mixing and high-temperature heating, followed by boron incorporation. The systematic methodology includes forming La(OH)(3) through chemical mixing and high-temperature heating, followed by combining it with boron to achieve the LaB6 structure. Characterization methods such as XRD, FTIR, SEM, AFM, and SIMS validated the successful synthesis and uniformity of the materials. Optical analyses showed increased visible transmittance and reduced infrared transmittance for the LaB6 thin film. Optical analyses showed increased visible transmittance and decreased infrared transmittance in the 110 nm thick LaB6 film, with an absorption valley at 1000 nm. SEM images revealed microstructural features and AFM analysis indicated a homogeneous distribution of La and B atoms with an RMS value of 0.87 nm. SIMS analysis confirmed uniform atomic distribution throughout the film thickness. The optimized recipes contribute to the efficiency and controllability of the synthesis process. The presented results provide valuable insights into material synthesis methodologies and serve as a crucial reference for utilizing LaB6 materials in infrared devices.
dc.description.sponsorshipTUBITAK [120F322]; CB-SBB [2019K12-149045]
dc.description.sponsorshipThis project is supported by TUBITAK and CB-SBB with grant No 120F322 and 2019K12-149045, respectively.
dc.identifier.doi10.1088/1402-4896/ad7db9
dc.identifier.issn0031-8949
dc.identifier.issn1402-4896
dc.identifier.issue11
dc.identifier.scopus2-s2.0-85206216977
dc.identifier.urihttps://doi.org/10.1088/1402-4896/ad7db9
dc.identifier.urihttps://hdl.handle.net/20.500.12418/28927
dc.identifier.volume99
dc.identifier.wosWOS:001326848800001
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherIop Publishing Ltd
dc.relation.ispartofPhysica Scripta
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectLaB6
dc.subjectsol-gel
dc.subjectx-ray diffraction
dc.subjectmorphology
dc.subjectIR filter
dc.titleOptimized synthesis and characterization of La(OH)3 and LaB6 nanostructures for enhanced NIR optical filters
dc.typeArticle

Dosyalar