A New Hybrid MCDM Model for Insulation Material Evaluation for Healthier Environment

dc.authoridKarabasevic, Darjan/0000-0001-5308-2503
dc.authorid, Figen BALO/0000-0001-5886-730X
dc.authoridUlutas, Alptekin/0000-0002-8130-1301
dc.contributor.authorAksakal, Berrak
dc.contributor.authorUlutas, Alptekin
dc.contributor.authorBalo, Figen
dc.contributor.authorKarabasevic, Darjan
dc.date.accessioned2024-10-26T18:08:00Z
dc.date.available2024-10-26T18:08:00Z
dc.date.issued2022
dc.departmentSivas Cumhuriyet Üniversitesi
dc.description.abstractOne of the easiest and most common methods for effectively reducing building energy demand is the selection of adequate thermal insulation materials. Thermal insulation is a substantial contribution and an evident, logical and practical first stage toward improving energy performance, particularly in envelope-load-dominant structures located in difficult climate zones. Today's insulating materials come in a broad variety of sizes and shapes, each with its a own qualities. It is well acknowledged that material selection is one of the most difficult and time-consuming aspects of a construction project. Therefore, choosing the right insulation material is also a very important topic to increase energy efficiency. However, it is a complex problem with many criteria and alternatives. This study integrates three different multi criteria decision making methods, which are Fuzzy Best-Worst Method, CRiteria Importance Through Inter-criteria Correlation and Mixed Aggregation by COmprehensive Normalization Technique. In this study, the following eight criteria were taken into account in the evaluation: thermal conductivity, periodic thermal transmittance, specific heat, density, decrement factor, surface mass, thermal transmittance, and thermal wave shift. The first method will be used to find the subjective weights, while the second method will be used to find the objective weights. The third method will be used to rank the insulation materials. According to the results of the Fuzzy Best-Worst Method, the most important criterion was determined as thermal conductivity. According to the results of the CRiteria Importance Through Inter-criteria Correlation, the most important criterion was determined as thermal wave shift. According to the results of the Mixed Aggregation by COmprehensive Normalization Technique, the top 10 insulation materials are as follows: polyisocyanurate, polyurethane (1), polyurethane (2), wood fiber (1), kenaf, jute, cellulose (2), wood fiber (1), XPS (1) and XPS (2). According to the results of the proposed method, polyisocyanurate was determined as the best insulation material for healthier environment. This study makes two contributions to the literature: first, a new hybrid method was developed in this study. Secondly, in this study, the newly introduced Mixed Aggregation by COmprehensive Normalization Technique method was used.
dc.identifier.doi10.3390/buildings12050655
dc.identifier.issn2075-5309
dc.identifier.issue5
dc.identifier.scopus2-s2.0-85130574058
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.3390/buildings12050655
dc.identifier.urihttps://hdl.handle.net/20.500.12418/29765
dc.identifier.volume12
dc.identifier.wosWOS:000803473600001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherMdpi
dc.relation.ispartofBuildings
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectbuilding
dc.subjectthermal
dc.subjectinsulation materials
dc.subjectMACONT
dc.subjectFuzzy BWM
dc.subjectCRITIC
dc.titleA New Hybrid MCDM Model for Insulation Material Evaluation for Healthier Environment
dc.typeArticle

Dosyalar