Advanced predictive modelling of electric quadrupole transitions in even-even nuclei using various machine learning approaches

Küçük Resim Yok

Tarih

2025

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Empirical predictions of electric quadrupole transition probabilities, B (E2; 0*-> 2*), in even-even nuclei, are among the principles needed to solve the nuclear structure and collective behaviour. In this study, nine different ML algorithms, gradient boosting machine (GBM), random forest (RF), convolutional neural network (CNN), k-nearest neighbour (KNN), CatBoost, extreme gradient boosting (XGBoost), neural network (NN), support vector machine (SVM) and multiple linear regression (MLR), are evaluated as a different data-driven solution for the prediction of B(E2) values. The outcomes show that ensemble models, in particular GBMs, RF, and XGBoost, provide vastly improved predictive capabilities and generalizing influence while creating strong correlations to experimental data with small prediction errors. On the other hand, deep learning models such as CNN and NN is prone to overfitting, while simpler ones such as MLR and KNN fail to capture the non-linear relationships inherent in nuclear data. The findings underscore the promise of ensemble ML tools for nuclear physics in a scalable, accurate approach for predicting transition probabilities.

Açıklama

Anahtar Kelimeler

Nuclear structure, B(e2), Machine learning, Ensemble model

Kaynak

Nuclear Physics A

WoS Q Değeri

Q2

Scopus Q Değeri

Q2

Cilt

1058

Sayı

Künye