DFT and experimental studies of the facet-dependent oxygen vacancies modulated WS2/BiOCl-OV S-scheme structure for enhanced photocatalytic removal of ciprofloxacin from wastewater

dc.authoridNguyen, Van-Huy/0000-0001-8556-1955
dc.authoridAhamad, Tansir/0000-0002-9400-5317
dc.authoridMatsagar, Babasaheb M./0000-0002-9640-1567
dc.authoridMaslov, Mikhail/0000-0001-8498-4817
dc.authoridLe, Quyet Van/0000-0002-4313-301X
dc.contributor.authorKumar, Abhinandan
dc.contributor.authorSingh, Pardeep
dc.contributor.authorNguyen, Van-Huy
dc.contributor.authorVan Le, Quyet
dc.contributor.authorAhamad, Tansir
dc.contributor.authorThakur, Sourbh
dc.contributor.authorMatsagar, Babasaheb M.
dc.date.accessioned2024-10-26T18:11:35Z
dc.date.available2024-10-26T18:11:35Z
dc.date.issued2024
dc.departmentSivas Cumhuriyet Üniversitesi
dc.description.abstractThe present study explores visible light-assisted photodegradation of ciprofloxacin hydrochloride (CIP) antibiotic as a promising solution to water pollution. The focus is on transforming the optical and electronic properties of BiOCl through the generation of oxygen vacancies (OVs) and the exposure of (110) facets, forming a robust Sscheme heterojunction with WS2. The resultant OVs mediated composite with an optimal ratio of WS2 and BiOClOV (4-WS2/BiOCl-OV) demonstrated remarkable efficiency (94.3%) in the visible light-assisted photodegradation of CIP antibiotic within 1.5 h. The CIP degradation using 4-WS2/BiOCl-OV followed pseudo -firstorder kinetics with the rate constant of 0.023 min -1, outperforming bare WS2, BiOCl, and BiOCl-OV by 8, 6, and 4 times, respectively. Density functional theory (DFT) analysis aligned well with experimental results, providing insights into the structural arrangement and bandgap analysis of the photocatalysts. Liquid chromatography-mass spectrometry (LC-MS) analysis utilized for identifying potentially degraded products while scavenging experiments and electron paramagnetic resonance (EPR) spin trapping analysis elucidated the S-scheme charge transfer mechanism. This research contributes to advancing the design of oxygen vacancymediated S-scheme systems in the realm of photocatalysis, with potential implications for addressing water pollution concerns.
dc.description.sponsorshipKing Saud University, Riyadh, Saudi Arabia [RSP2024R6]
dc.description.sponsorshipThe authors thank the Researchers Supporting Project number (RSP2024R6) , King Saud University, Riyadh, Saudi Arabia.
dc.identifier.doi10.1016/j.envres.2024.118519
dc.identifier.issn0013-9351
dc.identifier.issn1096-0953
dc.identifier.pmid38382660
dc.identifier.scopus2-s2.0-85186265716
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.envres.2024.118519
dc.identifier.urihttps://hdl.handle.net/20.500.12418/30748
dc.identifier.volume250
dc.identifier.wosWOS:001198771900001
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherAcademic Press Inc Elsevier Science
dc.relation.ispartofEnvironmental Research
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectOxygen vacancies
dc.subjectWS 2 /BiOCl-OV
dc.subjectCiprofloxacin photodegradation
dc.subjectS-Scheme
dc.titleDFT and experimental studies of the facet-dependent oxygen vacancies modulated WS2/BiOCl-OV S-scheme structure for enhanced photocatalytic removal of ciprofloxacin from wastewater
dc.typeArticle

Dosyalar