Novel automatic group identification approaches for group recommendation

dc.authorid0000-0003-3818-6712tr
dc.contributor.authorYalcin Emre
dc.contributor.authorBilge Alper
dc.date.accessioned2022-05-05T11:50:06Z
dc.date.available2022-05-05T11:50:06Z
dc.date.issued2021tr
dc.departmentMühendislik Fakültesitr
dc.description.abstractGroup recommender systems are specialized in suggesting preferable products or services to a group of users rather than an individual by aggregating personal preferences of group members. In such expert systems, the initial task is to identify groups of similar users via clustering approaches as user groups are usually not predefined. However, clustering users into groups commonly suffer from sparsity, scalability, and complexity problems as the content in the domain proliferate. Moreover, group homogeneity and size are the critical parameters for organizing group members and enhancing their satisfaction. In this study, we propose novel automatic user grouping approaches by constructing a binary decision tree via bisecting k-means clustering for enhanced group formation and group size restriction. Furthermore, we propose adopting a genre-based mapping of user ratings into a tiny and dense vector to represent users, which both improves computation time for constructing the binary decision tree and enables eliminating adverse effects of sparsity. Finally, since the quality of group formation is not only dependent on conforming preferences but also to the demographic harmony among members, we further introduce utilizing similarities based on demographic characteristics along with the genre-based similarities. We propose applying two distinct strategies for small and large groups by decorating the genre-based similarities with demographic properties, which leads to a more homogeneous automatic group formation. Experiments performed on real-world benchmark datasets demonstrate that each proposed method outperforms its traditional rival significantly, and the final proposed method achieves significantly more qualified ranked recommendation lists than the state-of-the-art algorithm.tr
dc.identifier.doi10.1016/j.eswa.2021.114709en_US
dc.identifier.scopus2-s2.0-85102467527en_US
dc.identifier.scopusqualityN/A
dc.identifier.startpage114709tr
dc.identifier.urihttps://www.sciencedirect.com/science/article/abs/pii/S0957417421001500
dc.identifier.urihttps://hdl.handle.net/20.500.12418/12642
dc.identifier.volume174tr
dc.identifier.wosWOS:000663144700008en_US
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElseviertr
dc.relation.ispartofExpert Systems with Applicationsen_US
dc.relation.publicationcategoryUluslararası Hakemli Dergide Makale - Kurum Öğretim Elemanıtr
dc.rightsinfo:eu-repo/semantics/restrictedAccesstr
dc.subjectGroup recommender systemstr
dc.subjectBisecting k-means clusteringtr
dc.subjectAutomatic group identificationtr
dc.subjectUser-profilingtr
dc.titleNovel automatic group identification approaches for group recommendationen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
PublishedVersion.pdf
Boyut:
957.76 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: