Estimation of fusion reaction cross-sections by artificial neural networks

Küçük Resim Yok

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Accurate determination of total fusion and fusion-evaporation reaction cross-sections is an important task in experimental nuclear physics studies. In this study, we estimated the total fusion cross-sections and, as an example, one of the particular channels (2n) cross-sections for different reactions by using artificial neural network (ANN) methods. The root mean square errors for fusion reaction were obtained as 18.5 and 110.4 mb for the training and test data, which correspond to 1.8% and 10.5% deviations from the experimental cross-section values, respectively. These values for the 2n channel are 0.3% for training and 13.3% for test data of ANN. The deviations are mostly lower than the cross-section values from a commonly used theoretical calculation code. The results indicate that ANN methods might be a possible candidate tool for the estimation of cross-sections for fusion and fusion-evaporation reactions.

Açıklama

Anahtar Kelimeler

Fusion, Fusion-evaporation reaction, Cross-section, Artificial neural network

Kaynak

Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions With Materials and Atoms

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

462

Sayı

Künye