Estimation of fusion reaction cross-sections by artificial neural networks

dc.contributor.authorAkkoyun, Serkan
dc.date.accessioned2024-10-26T18:02:45Z
dc.date.available2024-10-26T18:02:45Z
dc.date.issued2020
dc.departmentSivas Cumhuriyet Üniversitesi
dc.description.abstractAccurate determination of total fusion and fusion-evaporation reaction cross-sections is an important task in experimental nuclear physics studies. In this study, we estimated the total fusion cross-sections and, as an example, one of the particular channels (2n) cross-sections for different reactions by using artificial neural network (ANN) methods. The root mean square errors for fusion reaction were obtained as 18.5 and 110.4 mb for the training and test data, which correspond to 1.8% and 10.5% deviations from the experimental cross-section values, respectively. These values for the 2n channel are 0.3% for training and 13.3% for test data of ANN. The deviations are mostly lower than the cross-section values from a commonly used theoretical calculation code. The results indicate that ANN methods might be a possible candidate tool for the estimation of cross-sections for fusion and fusion-evaporation reactions.
dc.identifier.doi10.1016/j.nimb.2019.11.014
dc.identifier.endpage54
dc.identifier.issn0168-583X
dc.identifier.issn1872-9584
dc.identifier.scopus2-s2.0-85074790974
dc.identifier.scopusqualityQ2
dc.identifier.startpage51
dc.identifier.urihttps://doi.org/10.1016/j.nimb.2019.11.014
dc.identifier.urihttps://hdl.handle.net/20.500.12418/28339
dc.identifier.volume462
dc.identifier.wosWOS:000502893100007
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofNuclear Instruments & Methods in Physics Research Section B-Beam Interactions With Materials and Atoms
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectFusion
dc.subjectFusion-evaporation reaction
dc.subjectCross-section
dc.subjectArtificial neural network
dc.titleEstimation of fusion reaction cross-sections by artificial neural networks
dc.typeArticle

Dosyalar